Formal Logic

Lecture 5: Derivations in Propositional Logic (Part II)

Dr. Ioannis Votsis

ioannis.votsis@nchlondon.ac.uk

www.votsis.org
The Principle of Explosion
On the next slide, I make use of an inference rule I left out of our system of logic to make the derivation shorter.

NB: Try to replace the steps employing it with the rules we included in our system of logic.

Disjunctive Syllogism:

1. A ∨ B Assumption Either Ann or Joe runs the race.
2. ¬A Assumption It’s not the case that Ann runs.
3. B 1, 2 DS \[\therefore\] Joe runs the race.

Natural Language Example:

Either Ann or Joe runs the race.
It’s not the case that Ann runs.
\[\therefore\] Joe runs the race.
Proof

• In what follows, we prove in four steps (in addition to the premise) that anything follows from a contradiction.

• That is, we start the derivation with a contradiction (any will do) and end with a proposition (again, any will do).

1. \(\neg A \land A \) Assumption

2. \(A \) 1 &E

3. \(A \lor Z \) 2 V1

4. \(\neg A \) 1 &E

5. \(Z \) 3, 4 DS

NB: As we haven’t interpreted A or Z, the proof is general.
Proof (in natural language)

1. Elvis is alive and Elvis is not alive.
 Assumption
2. Elvis is alive.
 1 &E
3. Elvis is alive or the world will end in 2021.
 2 V I
4. Elvis is not alive.
 1 &E
5. The world will end in 2021.
 3, 4 DS
Syntactic Properties
Syntactic consistency

• A set of propositions Γ is syntactically consistent (in SD) iff it is not syntactically inconsistent (in SD).

• A set of propositions Γ is syntactically inconsistent (in SD) iff at least one proposition and its negation is derivable from Γ.

1. $A \rightarrow B$ Assumption
2. A Assumption
3. $\neg B$ Assumption
4. B 1, 2 $\rightarrow E$
5. $\neg B$ 3 R
Theorems and anti-theorems in SD

• A proposition P is a **syntactic theorem (in SD)** iff P is derivable from the empty set (i.e. from no premises).

 1. \[\frac{}{A \rightarrow I} \]
 2. \[\frac{}{A \rightarrow 1 R} \]
 3. \[A
ightarrow A \rightarrow I \]

• A proposition P is a **syntactic anti-theorem (in SD)** iff \(\neg P\) is a theorem (in SD).

NB: Needless to say, these syntactic notions correspond to the semantic notions of tautology and contradiction respectively.
A proposition P is **syntactically contingent (in SD)** iff neither P nor $\neg P$ is a theorem (in SD).

NB: In *The Logic Book*, these are called ‘syntactically undetermined’ propositions.

- Take proposition $A \rightarrow B$. Neither $A \rightarrow B$ nor $\neg (A \rightarrow B)$ can be derived from the empty set. It is thus syntactically contingent.
Propositions P, Q are **syntactically equivalent (in SD)** iff P is derivable (in SD) from Q and Q is derivable (in SD) from P.

<table>
<thead>
<tr>
<th>1. $A \leftrightarrow B$</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. \underline{B}</td>
<td>$A / \leftrightarrow I$</td>
</tr>
<tr>
<td>3. \underline{A}</td>
<td>$1, 2 \leftrightarrow E$</td>
</tr>
<tr>
<td>4. \underline{A}</td>
<td>$A / \leftrightarrow I$</td>
</tr>
<tr>
<td>5. \underline{B}</td>
<td>$1, 4 \leftrightarrow E$</td>
</tr>
<tr>
<td>6. $B \leftrightarrow A$</td>
<td>$2-3, 4-5 \leftrightarrow I$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. $B \leftrightarrow A$</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. \underline{A}</td>
<td>$A / \leftrightarrow I$</td>
</tr>
<tr>
<td>3. \underline{B}</td>
<td>$1, 2 \leftrightarrow E$</td>
</tr>
<tr>
<td>4. \underline{B}</td>
<td>$A / \leftrightarrow I$</td>
</tr>
<tr>
<td>5. \underline{A}</td>
<td>$1, 4 \leftrightarrow E$</td>
</tr>
<tr>
<td>6. $A \leftrightarrow B$</td>
<td>$2-3, 4-5 \leftrightarrow I$</td>
</tr>
</tbody>
</table>
Some Exercises
Instructions: Complete the following derivations by entering justifications for the derived sentences.
(1a) Derive: A & B

1. A => Assumption
2. A & B => Assumption
3. B 1, 2 \rightarrow E
4. A & B 1, 3 &I

(1b) Derive: \neg C

1. A \rightarrow (B & \neg C) => Assumption
2. A & B => Assumption
3. A 2 &E
4. B & \neg C 1, 3 \rightarrow E
5. \neg C 4 &E
(1c) Derive: \(\neg(A \leftrightarrow \neg B)\)

1. \(\neg(A \leftrightarrow \neg B) \leftrightarrow (\neg C \lor \neg D)\) Assumption
2. \(A \rightarrow (\neg D \& C)\) Assumption
3. \(D \& A\) Assumption
4. \(A\) 3 &E
5. \(\neg D \& C\) 2, 4 \(\rightarrow\)E
6. \(\neg D\) 5 &E
7. \(\neg C \lor \neg D\) 6 \(\lor\)I
8. \(\neg(A \leftrightarrow \neg B)\) 1, 7 \(\leftrightarrow\)E
Instructions: Complete the following derivations.
(2a) Derive: D & ¬B

1. A & ¬B Assumption
2. (A ∨ ¬C) → D Assumption
3. A 1 &E
4. A ∨ ¬C 3 ∨I
5. D 2, 4 →E
6. ¬B 1 &E
7. D & ¬B 5, 6 &I
(2b) Derive: \(F \land \neg H \)

1. \(F \leftrightarrow \neg G \)
 Assumption
2. \(D \to \neg G \)
 Assumption
3. \(\neg H \land D \)
 Assumption
4. \(D \)
 3 &E
5. \(\neg G \)
 2, 4 \to E
6. \(F \)
 1, 5 \leftrightarrow E
7. \(\neg H \)
 3 &E
8. \(F \land \neg H \)
 6, 7 \&I
(2c) Derive: $\neg D \lor E$

1. $A \land \neg B$ Assumption
2. $\neg B \leftrightarrow (A \leftrightarrow \neg D)$ Assumption
3. $\neg B$ 1 &E
4. $A \leftrightarrow \neg D$ 2, 3 \leftrightarrowE
5. A 1 &E
6. $\neg D$ 4, 5 \leftrightarrowE
7. $\neg D \lor E$ 6 \lorI
Instructions: Complete the following derivations by entering the appropriate justifications.
(1a) Derive: \((A \rightarrow B) \& (A \rightarrow \neg D)\)

1. \(A \rightarrow (B \& \neg D)\) Assumption

2. \(A\) \(\rightarrow\)I

3. \(B \& \neg D\) 1, 2 \(\rightarrow\)E

4. \(B\) 3 \&E

5. \(A \rightarrow B\) 2-4 \(\rightarrow\)I

6. \(A\) \(\rightarrow\)I

7. \(B \& \neg D\) 1, 6 \(\rightarrow\)E

8. \(\neg D\) 7 \&E

9. \(A \rightarrow \neg D\) 6-8 \(\rightarrow\)I

10. \((A \rightarrow B) \& (A \rightarrow \neg D)\) 5, 9 \&I
(1b) Derive: $A \rightarrow [B \rightarrow (C \lor D)]$

1. $(A \& B) \rightarrow C$ Assumption
2. A $A / \rightarrow I$
3. B $A / \rightarrow I$
4. $A \& B$ 2, 3 &I
5. C 1, 4 →E
6. $C \lor D$ 5 VI
7. $B \rightarrow (C \lor D)$ 3-6 →I
8. $A \rightarrow [B \rightarrow (C \lor D)]$ 2-7 →I
Instructions: Complete the following derivations.
(2a) Derive: A ↔ B

1. A
 Assumption
2. B
 Assumption
3. \[\text{A} \]
 A / ↔I
4. \[\text{B} \]
 2 R
5. \[\text{B} \]
 A / ↔I
6. \[\text{A} \]
 1 R
7. A ↔ B
 3-4, 5-6 ↔I
(2b) Derive: \(\neg B \)

1. \(B \rightarrow \neg B \)
 Assumption

2. \(B \)
 A / \(\neg I \)

3. \(\neg B \)
 1, 2 \(\rightarrow E \)

4. \(B \)
 2 \(R \)

5. \(\neg B \)
 2-4 \(\neg I \)
(2c) Derive: A

1. \(\neg\neg A \) Assumption
2. \(\neg A \) A / \(\neg E \)
3. \(\neg\neg A \) 1 R
4. \(\neg A \) 2 R
5. A 2-4 \(\neg E \)
Derivation Rules of Thumb
Reasoning backwards

• If the ultimate goal sentence is atomic, the final step in the derivation will see the application of an elimination rule.

NB: In special cases like establishing inconsistency that final rule may simply be reiteration.

• If it’s a compound sentence, the final step in the derivation may involve either an introduction or an elimination rule.

NB: There are generally multiple ways to derive the same conclusion from the same premises.

• We can apply the same reasoning to the 2nd-to-last, 3rd-to-last, ... sentence until we close the premises-conclusion gap.
To subderive or not to subderive

• Another rule of thumb is to ask whether the ultimate goal sentence is a constituent part of a complex sentence premise.

• Such parts can take the form of conjuncts, disjuncts, consequents and either side of a biconditional.

• If so, the need for a subderivation for that sentence is unlikely. What is needed instead is an elimination rule.

NB: Disjunction elimination is the exception here as it’s both an elimination rule and employs subderivations.

• Otherwise, it is advisable to consider a subderivation.
The End