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Modelling Analogical Reasoning: One-Size-Fits-All? 
Ioannis Votsis 

 
1. IntroducƟon 
A key type of reasoning in everyday life and science is reasoning by analogy. Roughly speaking, such 
reasoning involves the transposiƟon of soluƟons that work well in one domain to another, on the basis 
of pre-exisƟng shared properƟes between the two domains. If we are to automate scienƟfic reasoning 
with arƟficial intelligence (AI), then we need adequate models of analogical reasoning that clearly 
specify the condiƟons under which good analogical inferences can be made and bad ones avoided. 
Two general approaches to such modelling exist: universal and local. In this chapter, we assess the 
merits and demerits of both approaches. We concede that there are substanƟal obstacles standing in 
the way of the universal model view, but that these may be miƟgated to some extent by supplemenƟng 
exisƟng models with addiƟonal criteria. One such criterion is defended, parƟcularly against a challenge 
due to WiƩgenstein. We argue that this challenge can be met and thus that there is hope for a one-
size-fits-all model in the study of analogical reasoning. 
 
The structure of the chapter is as follows. SecƟon 2 provides an overview of the main philosophical 
models of analogical reasoning, idenƟfying some of their strengths and weaknesses. SecƟon 3 briefly 
looks at one model of analogical reasoning that originates in the symbolic AI tradiƟon, and offers some 
very general remarks about the prospects of modelling analogical reasoning with neural AI. SecƟon 4 
sets out the key issue of concern for this chapter, namely whether a universal model of analogical 
reasoning can be constructed. SecƟon 5 considers one promising route towards a universal model via 
the criterion that the concepts involved are relevantly uniform. SecƟon 6 presents a challenge to this 
route that can be found in WiƩgenstein’s family resemblance metaphor, whose ulƟmate target is the 
rejecƟon of concept uniformity. An aƩempt is made to meet this challenge by arguing that some 
concepts in natural science are uniform, or at least more uniform than others, but also that scienƟfic 
inquiry strives towards, and manages to increase, uniformity. SecƟon 7 highlights the testability of the 
proposed criterion as well as the relaƟve ease with which it can be computaƟonally implemented, 
raising the overall prospects of automaƟng the process of scienƟfic discovery. The essay concludes 
with SecƟon 8, which contains a summary of the main points but also a parƟng aƩempt to answer the 
quesƟon why analogical reasoning works at all. 
 
2. Philosophical Models of Analogical Reasoning 
In this secƟon, we explore some of the main models of analogical reasoning, parƟcularly as they are 
applied to the sciences. These models are taken from the philosophical literature. Let us begin the 
discussion with some useful terminology. 
 
Analogical reasoning is reasoning that exploits analogies. Performing such reasoning first requires 
some known or accepted similariƟes between the properƟes and/or relaƟons – henceforth, simply 
‘properƟes’ – of two domains, which we may call ‘source’ S and ‘target’ T. These similariƟes ground 
the analogy, which is then employed to infer an addiƟonal similarity between S and T. The addiƟonal 
similarity concerns a property known or accepted to hold in S, but heretofore not known or accepted 
in T. Darwin posited his theory of evoluƟon by natural selecƟon by, among other things, drawing 
inspiraƟon from two sources: (1) arƟficial selecƟon and (2) Malthus’ principle of populaƟon growth. 
ArƟficial selecƟon involves the breeding of animals or plants to suppress or accentuate certain traits. 
During Darwin’s Ɵme, for example, pigeons and other birds were bred for exhibiƟon purposes by 
making their beaks smaller and their chests bigger. This was accomplished by successively maƟng birds 
that exhibited the desired traits, which were then inherited in the next generaƟon, leading to a slow 
but steady tendency towards those traits. Malthus’s principle of populaƟon growth was an aƩempt to 
model what happens to the size of a human populaƟon when the availability of resources varies. In 
Ɵmes of plenty, and other things being equal, such populaƟons grow. At some point, however, the 
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growth outpaces the availability of resources, leading to compeƟƟon and a struggle for existence, 
including war and populaƟon reducƟons. Using analogical reasoning, Darwin argued that nature places 
similar selecƟon and resource pressures on animals and plants. These pressures suppress or 
accentuate traits depending on whether or not possessing them provides advantages or drawbacks in 
the struggle for survival and reproducƟon. In his own words: 
 

[w]hy may I not invent hypothesis of natural selecƟon (which from the analogy of domesƟc producƟons 
[i.e. arƟficial selecƟon], & from what we know of the struggle of existence [i.e. Malthus’ principle] & of 
the variability of organic beings, is in some very slight degree, in itself probable) & try whether this 
hypothesis of natural selecƟon does not explain (as I think it does) a large number of facts. (LeƩer to J.S 
Henslow, quoted in Darwin [1860] 1967: 204). 

 
Analogical reasoning is typically construed in argument form. The premises assert known/accepted 
similariƟes between the properƟes or relaƟons of S and T as well as some addiƟonal property that S is 
known/accepted to possesses. That addiƟonal property is then inferred in the conclusion to be true of 
T. As an example, we may turn to the abovemenƟoned analogy, whose corresponding argument may 
be formulated as follows (where AS is ArƟficial SelecƟon, NS is Natural SelecƟon, MP is Malthus’ 
Principle): 
 

1. AS is similar to NS in that selecƟve reproducƟon affects which traits are inherited. 
2. MP is similar to NS in that there is compeƟƟon for resources. 
3. AS selecƟon pressures affect survival and reproducƟon rates. 
4. MP resource pressures affect survival and reproducƟon rates. 
5. Therefore, NS selecƟon and resource pressures affect survival and reproducƟon rates. 
 

Stated thus, the argument is best characterized as either inducƟve or abducƟve in form. SƟll, it can be 
turned into a deducƟve argument by finding and staƟng the missing premises. Two quesƟons arise 
here. One is descripƟve: What form of arguments are involved in analogical reasoning as it is pracƟced? 
The other is prescripƟve: What form of arguments should be involved in such reasoning? We shall not 
wade into this debate. For simplicity, and unless otherwise noted, the analogical arguments presented 
hereaŌer are cast in broadly inducƟvist terms. 
 
Another important issue that comes up in this literature concerns the role of analogical arguments. 
SomeƟmes such arguments are uƟlized to provide support for a conclusion, thereby playing a 
jusƟficatory role. Indeed, as Bartha notes: “In fields such as archaeology, where we lack direct means 
of tesƟng, they may provide the strongest form of support available” (2010: 2). More frequently, 
however, they are uƟlized to provide some iniƟal plausibility, thereby playing a discovery or heurisƟc 
role. The former role is typically thought to be more demanding than the laƩer. As a result, models of 
analogical reasoning that are geared towards jusƟficaƟon are also employed for discovery but not vice 
versa. In what follows, we are focusing more on discovery rather than full-blown jusƟficaƟon. This 
stance is not meant to prejudge our aƫtude towards the debate over the proper role for analogical 
reasoning. To make this clear, whenever possible, we will employ the neutral term ‘admissible’ to 
denote the various roles such arguments may play. That is to say, admissibility may be enunciated in 
different ways, e.g. example, iniƟal plausibility, probability, and so on. 
 
Let us explore some philosophical models of analogical reasoning. The first such model is simplisƟc but 
useful in that it conveys some basic ingredients that go into modelling analogical reasoning: 
 

The Simple Schema (TSS) 
 
An analogical inference from S to T (in relaƟon to feature Q) is admissible if and only if: 
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“(1) S is similar to T in certain (known) respects. 
(2) S has some further feature Q. 
(3) Therefore, T has the feature Q, or some feature Q* similar to Q.” (Bartha 2010: 13). 

 
This is a no-frills version of analogical reasoning. The key quesƟon is whether Q, the addiƟonal feature 
of S asserted in premise 2, is also a feature of T. Given the analogy between S and T established in 
premise 1, we are allowed to conclude that it is also a feature of T. Note that, strictly speaking, the 
inferred feature need not be idenƟcal but may just be merely similar to Q – hence the reference to Q*. 
 
TSS is clearly too liberal. Almost any S–T pairing can be deemed to be analogous and therefore ripe for 
an extended analogy to a corresponding feature Q. That’s because the only requirement TSS brings to 
the table is the existence of some similariƟes between S and T, and these are rather easy to come by. 
Here’s a made-up example that illustrates how this liberality can lead to absurd results: 
 

1. Diamonds and chalk are made up of carbon-based molecules.  
 2. Diamonds have a hardness raƟng of 10 on the Mohs scale.  

3. Therefore, chalk has a hardness raƟng of 10 on the Mohs scale. 
 
This is obviously a bad inference to draw as chalk is a very soŌ rock. It is made up of calcite, which 
actually has a raƟng of 3 on the Mohs scale, where 10 is the hardest and 1 the soŌest. 
 
Another philosophical model, one that seeks to plug the holes leŌ behind by TSS, is Hesse’s (1966) 
causal model. The model is meant to establish jusƟficaƟon for the inferred similarity by imposing three 
restricƟons on analogical arguments. First, the known/accepted similariƟes between S and T that set 
up the basic analogy must be observaƟonal (the observaƟonal condiƟon). Second, the properƟes in S 
that form part of the basic analogy must be causally connected to the addiƟonal property in S that 
forms part of the extended analogy (the causal condiƟon). Third, there must not be essenƟal or causal 
properƟes in S that are known to be dissimilar with essenƟal or causal properƟes in T (the no essenƟal 
dissimilarity condiƟon). This model is typically presented in tabular form: 

 
  Hesse’s Causal Model (HCM) 
 

SimilariƟes          \              Domains S T 
Known ObservaƟonal Similarity Property Q1 Property Q1 (or Property Q1*) 

… … 
Property Qn Property Qn (or Property Qn*) 

Inferred ObservaƟonal Similarity Property Qn+1 Property Qn+1 (or Property Qn+1*) 
 
The known similariƟes, which establish the basic analogy, are conceived of as horizontal relaƟons 
(denoted by the double-headed arrow) between the observaƟonal properƟes Q1, …, Qn of S and those 
of T. The causal relaƟon between Q1, …, Qn and Qn+1 is conceived of as a verƟcal relaƟon (denoted by 
the single-headed arrow). Finally, the inferred similarity is property Qn+1 (or Qn+1*), which is located 
under T at the very boƩom on the right. The last row establishes the extended analogy between S and 
T. Applying this model to the diamond–chalk case, we can block the inference that chalk has a hardness 
raƟng of 10, because the property of being made up of carbon-based molecules on its own does not 
cause an object to have that level of hardness. 
 
Despite generally acknowledged as a step in the right direcƟon, HCM is seen as ulƟmately inadequate. 
One common accusaƟon is that it is too strict because it requires a causal connecƟon between Q1, …, 
Qn and Qn+1 where (presumably) someƟmes a mere correlaƟon can serve just as well. As an example, 
Bartha (2010) gives Benjamin Franklin’s inference that (metal) rods aƩract lightning in the wild just like 
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they aƩract electrical fluid in the lab, which Franklin bases on several exisƟng similariƟes between 
electrical fluid and lightning: “1. Giving light. 2. Colour of the light. 3. Crooked direcƟon… 10. MelƟng 
metals. 11. Firing inflammable substances. 12. Sulphureous smell.” (Franklin 1941: 334). This was a 
good analogical argument, Bartha argues, even though “[t]here was no known causal connecƟon 
between the twelve ‘parƟculars’ [the known similariƟes] and the thirteenth property [the inferred 
similarity], but there was a strong correlaƟon” (2010: 44). 
 
An altogether different philosophical approach puts probability front and centre, seeking to quanƟfy 
the goodness of analogical arguments. In a nutshell, known/accepted similariƟes increase the overall 
likeness between S and T, thereby lending more support to the inferred similarity. The idea goes back 
to John Stuart Mill ([1843] 1973), who argued that ‘There can be no doubt that every such resemblance 
which can be pointed out between B [read: T] and A [read: S], affords some degree of probability, 
beyond what would otherwise exist, in favour of the conclusion drawn from it’ (p. 556). The properƟes 
that those resemblances are about, he explained, ‘must not be properƟes known to be unconnected 
with it’ (p. 555). That is, they must not be properƟes that are not known to be irrelevant 
for the extended analogy. We can give this model a modern formulaƟon, interpreƟng probabiliƟes as 
raƟonal degrees of belief, a.k.a. ‘credences’, as follows: 
 

Mill’s Probability Model (MPM) 
 
The admissibility of an analogical inference from S to T (in relaƟon to property Qk) increases if 
and only if: (a) S(Qk) and (b) for any property Qi that is disƟnct from Qk, P(T(Qk) | (S(Qi) ≈s T(Qi)) 
& B) > P(T(Qk) | B).  
 
where: 
 
P(|) stands for a condiƟonal probability funcƟon  
(Qi) stands for domain  possessing property Qi  
(Qi) ≈s (Qi) stands for domains  and  being similar with respect to property Qi, which is 
not recognised as irrelevant. 
B stands for background knowledge 
  

Applying this model to the electrical fluid-lighƟng case enables us to draw the inference that (metal) 
rods aƩract lightning in the wild just as they aƩract electrical fluid in the lab, provided the similariƟes 
Franklin cites do indeed increase our credence in the inferred similarity. QuesƟons can of course be 
posed about the credence-inducing credenƟals of those similariƟes, but we will not pursue them here. 
 
MPM may overcome the restricƟveness that presumably afflicts HCM, but it does so by being more 
generous in its aƩribuƟon of goodness to analogical arguments. As such, it opens itself up to 
accusaƟons of being too liberal. SimilariƟes that are not known to, but may actually, be irrelevant are 
allowed to increase credence in T possessing that addiƟonal property. As an example, take the Ligularia 
fischeri (S) and the Caltha palustris (T) plants. These plants look very much alike and are oŌen mistaken 
for one another. Suppose that for a given individual X, S is known to be edible, but they do not know 
if T is edible. Suppose, moreover, that X does not know whether the properƟes involved in the 
phenotypical similariƟes are actually irrelevant for the edibility of the plants. Following MPM, X may 
then tragically draw the inference that T is edible, even though it is not only inedible but poisonous. 
Alas, this is not just a fabricated case. Every year several people in Korea get poisoned this way. 
 
The final philosophical model to consider here can be found in Bartha (2010: Ch. 4). His model is 
designed to play only a heurisƟc role. Moreover, the condiƟons it imposes are meant to be sufficient, 
but not necessary, for iniƟal plausibility: 
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Bartha’s ArƟculaƟon Model (BAM) 
 
“An analogical argument meets the requirements for prima facie [i.e. iniƟal] plausibility if: 
 
1. Overlap. + ∩ P  ∅ (where ∅ is the empty set). 
2. No-criƟcal-difference. C ∩ N = ∅.” (Bartha 2010: 101). 

 
The symbols are arƟculated as follows: P denotes all the properƟes in the posiƟve analogy (i.e. the 
known similariƟes between S and T), N denotes all the properƟes in the negaƟve analogy (i.e. the 
known dissimilariƟes between S and T), + denotes the properƟes in S that causally or merely 
correlaƟonally contribute to the presence of the addiƟonal property in S, and C denotes the 
properƟes in S that are criƟcal factors, i.e. “those elements of the prior associaƟon [i.e. the known 
similariƟes] represented as playing an essenƟal part in the circumstances" (100) [original emphasis]. 
What Bartha seems to mean by the first condiƟon is that at least one property in S used in the posiƟve 
analogy between S and T must be causally or merely correlaƟonally connected to the addiƟonal 
property in S. This condiƟon is clearly made in the image of HCM’s verƟcal relaƟon, but a bit looser to 
allow for correlaƟonal, not just causal, connecƟons. What he seems to mean by the second condiƟon 
is that no property in S that plays a criƟcal role in that connecƟon should be part of the negaƟve 
analogy between S and T. BAM is further developed in the same chapter to deal with arguments that 
employ mulƟple analogies. Moreover, in a subsequent chapter (Ch. 8), Bartha offers an adaptaƟon of 
his model in probabilisƟc terms, which he calls ‘non-negligible prior probability’. As the details of this 
adaptaƟon are quite involved, we refrain from its exposiƟon here. 
 
The model is not without its criƟcs. One objecƟon concerns the sancƟoning of both causal and 
correlaƟonal connecƟons between the base analogy properƟes and the property in the extended 
analogy. Although BAM’s inclusion of correlaƟonal cases appears to be a step forward when compared 
to HCM’s outright prohibiƟon, it is sƟll unclear why we should admit all correlaƟonal cases when 
making such inferences. If only some correlaƟonal cases pass muster, we need criteria that disƟnguish 
the good ones from the bad ones. Put otherwise, BAM appears to be too liberal in its concepƟon of 
analogical reasoning. 
 
3. AI Models of Analogical Reasoning 
Let us now discuss, albeit briefly, AI models. These are oŌen accompanied by computaƟonal 
implementaƟons and come in roughly two flavours: symbolic and neural.1 The symbolic models include 
the structure-mapping engine (SME) (Falkenhainer, Forbus and Gentner 1986) and the acƟve-symbol 
architecture (Hofstadter 1995). The neural models include the wild relaƟon network (BarreƩ et al. 
2018), and the emergent symbol binding network (Webb, Sinha and Cohen 2020). In what follows, and 
due to space limitaƟons, we consider only one symbolic model, the SME, but also make some general 
remarks about what can be expected from neural models. 
 
The SME is a computaƟonal model that implements Gentner’s (1983) structure-mapping theory of 
analogical processing in cogniƟon. The model restricts similariƟes to structures, i.e. the relaƟons 
between elements and even the relaƟons between relaƟons, of the domains in quesƟon.  In more 
detail, neither the elements nor the monadic properƟes of T need to resemble the elements or the 
monadic properƟes of S, but some relaƟons in T must be similar to relaƟons in S. Although not explicitly 
expressed in terms of analogical inference admissibility, we may provide such a formulaƟon for ease 
of comparison with the foregoing models: 
 

 
1 Mitchell (2021) provides a useful and up-to-date overview of AI models and divides them into three types: 
symbolic, deep learning and probabilisƟc program inducƟon. 
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Structure-Mapping Engine (SME) 
 
An analogical inference from S to T with respect to relaƟon Rk is admissible if (and only if?): (a) 
Rk is a relaƟon in S, (b) there is a systemaƟc mapping between some set of relaƟons RS in S and 
some set of relaƟons RT in T, where Rk ∉ RS, RT and (c) in case there is more than one such 
mapping, the one with the highest systemaƟcity is prioriƟzed as a basis for the inference. 

 
Note that it’s not clear whether the condiƟons in this model are envisioned to be merely sufficient, or 
also necessary. Note, moreover, that the criƟcal concept in those condiƟons is systemaƟcity. This, in 
effect, means that the mapping between relaƟons must include higher-order relaƟons, that is, 
relaƟons between relaƟons, because these (presumably) indicate that the knowledge in a given 
domain is connected. 
 
It’s worth considering a few details about the implementaƟon, which consists of three steps. The first 
step, roughly, involves the search for all possible individual relaƟon and object pairings between S and 
T. The relaƟons are described in a logical or quasi-logical language that contains constants and 
predicates. These predicates are nested in a tree-like structure to form expressions. To understand 
what’s going on, let us adapt an example from Falkenhainer, Forbus and Gentner (1986). Suppose that 
the domains in quesƟon are the solar system S and the Rutherford atom T. S is described in terms of 
the following nested two-place predicates: (i) Causes(And, Revolves_Around()), (ii) And(AƩracts(), 
Greater_Mass()), (iii) Greater_Mass(Sun, planet), (iv) AƩracts(Sun, planet), and (v) 
Revolves_Around(planet, Sun). T is described in terms of the following two-place predicates: (vi) 
Greater_Mass’(nucleus, electron) and (vii) AƩracts’(nucleus,electron). Two object pairings can be 
established in this case: nucleus – Sun and electron – planet. These pairings are suggested by the mass 
inequality relaƟonal pairing, expressed by the similarly named predicates Greater_Mass() and 
Greater_Mass’(), and the aƩracƟon pairing, expressed by the similarly named predicates AƩracts() and 
AƩracts’(). The second step, roughly, involves the construcƟon of all possible global mappings. These 
are mappings that merge individual pairings into a coherent whole. Finally, the third step, involves an 
evaluaƟon of global mappings to select the one that scores highest on systemaƟcity. In the case at 
issue, assuming no other pairings can be produced, SME will suggest that the other predicates in S also 
apply in T, e.g. Revolves_Around(electron, nucleus). More crucially, it will suggest that “the [mass] 
inequality, together with the mutual aƩracƟon of the nucleus and the electron, causes the electron to 
revolve around the nucleus” (275). This is, roughly, what happened in the history of atomic physics, 
when the Rutherford-Bohr model of the atom was proposed. According to this model, which has since 
been superseded, electrons are kept in orbit around the nucleus of an atom with an electrostaƟc force, 
just like planets are kept in orbit around the Sun with a gravitaƟonal force. 
 
One objecƟon to the SME model is that a lot hinges on the choice of predicates. Not only is that choice 
difficult to make, but there are also quesƟons about the effects it has on the drawing of analogical 
inferences. The laƩer issue generalizes into a problem that afflicts various areas of philosophy and 
beyond. That judgements concerning such issues as the ordering of theories on the basis of 
verisimilitude or simplicity may be affected by linguisƟc choices is a decades-old problem (Miller 2017). 
This problem is further compounded by the fact that SME does not provide any guidance on how to 
choose or indeed construct predicates, but assumes that these have already been supplied. AddiƟonal 
problems with SME are discussed in Bartha (2010: Ch. 3), who complains that systemaƟcity is neither 
necessary nor sufficient for good analogical inferences. 
 
It is now Ɵme to turn to some general remarks about neural net models of analogical reasoning. Neural 
net approaches to AI have been on the ascendancy in recent years. A big part of the reason why is the 
fact that deep neural nets, unlike symbolic systems, are more readily able to handle data that are not 
fully structured. As Kautz (2022) stresses, deep neural nets obviate “the need for manually engineered 
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features [machine learning speak for variables]” (112). This opens opportuniƟes that were once 
unavailable. SƟll, one major obstacle in the way of neural models of analogical reasoning is that neural 
nets are not parƟcularly good at reasoning. Their hidden layers of nodes, where the computaƟon 
occurs, are notoriously difficult to interpret. In fact, not only do those computaƟons fail to resemble 
human reasoning, but they also oŌen require vast amounts of data to draw simple inferences. 
 
Despite these obstacles, recent aƩempts at making headway on the problem of computaƟonally 
modelling analogical reasoning have leaned heavily on neural nets. On this approach, analogy making 
is something that needs to be learned. This involves feeding neural nets with relevant training data, 
e.g. correct and incorrect analogies. To address the problem that the data needs to be orders of 
magnitude higher than the available correct and incorrect analogies, AI theorists and pracƟƟoners 
have resorted to the automaƟc generaƟon of data. In some areas, this process is easier to carry out 
than in others. Non-verbal analogical reasoning tasks involving shapes whose aƩributes (e.g. colour 
and shape) vary, known as Raven’s progressive matrices, are now rouƟnely explored with neural nets, 
precisely because the producƟon of vast amounts of training and tesƟng data can be automated. 
 
Although neural nets trained on such sets are gradually geƫng beƩer at drawing the right analogies, 
deep disagreements have emerged (BarreƩ et al. 2018; Hu et al. 2021; Zhang et al. 2019) over whether 
the automaƟcally produced data are diverse enough to give rise to sufficiently stringent tests of the 
resulƟng models. Moreover, and as already indicated above, not all reasoning tasks are easily 
amenable to the arƟficial generaƟon of data. Given the generally higher complexity of analogical 
inferences in science (vs. in non-verbal tasks), one would expect that arƟficial data would be harder to 
synthesize ab iniƟo. As such, analogical reasoning in science presents a significant challenge for those 
advocaƟng neural net approaches. There is also a more general reason to doubt the amount of mileage 
we can get out of neural nets. If we had a method to produce diverse data that provide sufficiently 
stringent tests for our models, then we wouldn’t really need (to test) those models because the 
method itself would presumably generate the desired model or something like it. 
 
It is not our intenƟon here to say that neural net models face insurmountable problems as regards the 
modelling of analogical reasoning in science. Rather, we just wanted to highlight some genuine 
difficulƟes. To end on a more posiƟve note, we would like to point out that neuro-symbolic approaches 
to AI are increasingly being adopted to solve problems that require the complementary strengths of 
neural nets and symbolic methods. Kautz (2022), for example, reports that ‘the next big scienƟfic 
advance in AI’ will involve such hybrid systems. We expect a similar tendency in the area of analogical 
reasoning in science, raising the prospects of a fully automated approach to scienƟfic discovery. 
 
We conclude this secƟon with some big picture remarks on the analogical reasoning models, both 
philosophical and AI, on offer. Such models are prescripƟve in that they do not merely, or primarily, 
concern themselves with the actual pracƟce of discriminaƟng between good and bad analogical 
reasoning. Some of them are explicitly qualitaƟve (TSS, HCM, non-probabilisƟc BAM), while others are 
quanƟtaƟve (MPM, probabilisƟc BAM, SME). Some are merely heurisƟcally-oriented (BAM, SME), 
hoping to establish iniƟal plausibility claims about inferred similariƟes. Others play both a heurisƟc 
and a jusƟficatory role (TSS, HCM, MPM), hoping to also establish support towards those claims. All of 
them encounter counterexamples, which allege either that they are too liberal (TSS, MPM, SME, BAM) 
or too stringent (HCM).2 Despite these drawbacks, nothing of what we said here prevents their 
amelioraƟon through a modificaƟon (addiƟon, deleƟon, or both) of their stated condiƟons. The secƟon 
following the next offers one such addiƟonal criterion that can be bolted on to any of the above 
models. Before we get to that secƟon, however, a general challenge awaits. 
 

 
2 Although we have not discussed this point earlier, it is worth noƟng that some models have been accused of 
being too strict in some respects and too liberal in others. 
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4. Norton’s Material Challenge   
An easy way out of having to deal with counterexamples is to deny that any such models, even when 
they are modified, cover all (and only) instances of good analogical reasoning. This is tantamount to 
denying the existence of a universal model of analogical reasoning, and it is a route that several 
scholars have taken. Some (Currie 2013; Reiss 2015; Toulmin 1958) have suggested that different fields 
of research require different models. Others, like Norton (2003, 2011, 2021), have suggested a more 
fine-grained approach, claiming that different research quesƟons, even when these emanate from the 
same field, require different models. In this secƟon, we consider a general challenge against those who 
wish to analyse analogical modelling in terms of a one-size-fits-all, that is, a universal model. 
 
The challenge is due to Norton and is based on the claim that inducƟve inferences are only good in so 
far as they are licensed by local facts pertaining to the situaƟon. His argument is based on an 
ingeniously simple example. Compare the following two inducƟve inferences: 
 

 Inference 1 Inference 2 
Premise: Some samples of bismuth melt at 271 °C. Some samples of wax melt at 91°C. 
Conclusion: All samples of bismuth melt at 271 °C. All samples of wax melt at 91°C. 

 
Although the two inferences are structurally idenƟcal, only the first one is good. That’s because all 
samples of bismuth do melt at 271 °C, but not all samples of wax melt at 91 °C. On Norton’s view, the 
goodness of an inducƟve inference is “grounded in maƩers of fact that hold only in parƟcular domains” 
(2003: 647). Thus, there are facts about bismuth, but not about wax, that make it the case that all of 
its samples behave in the same way. 
 
Unsurprisingly, Norton extends this aƫtude to analogical reasoning, which he considers to be a species 
of inducƟve reasoning. In doing so, he repudiates the universal model of analogical reasoning: 
 

If analogical reasoning is required to conform only to a simple formal schema, the restricƟon is too 
permissive. Inferences are authorized that clearly should not pass muster.… The natural response has been 
to develop more elaborate formal templates that are able to discriminate more finely by capturing more 
details of various test cases… elaboraƟons cannot escape the inevitable difficulty. Their embellished 
schema [is] never quite embellished enough. There is always some part of the analysis that must be 
handled… without guidance from strict formal rules. (2021: 119-120). 

 
In other words, he takes the whole project of aƩempƟng to construct models like the above as doomed 
from the outset. Such models face the impossible (to him) task of trying to catch all the 
counterexamples with the introducƟon of more and more qualificaƟons. Expressed a different way, 
modellers may be facing the impossible task of trying to find an elusive balance between just the right 
amount of permissiveness and just the right amount of restricƟveness. 
 
The compelling force of the bismuth-wax example notwithstanding, it is worth asking whether the 
process of adjusƟng models of analogical reasoning has no end in sight. Is the trade-off between 
maximizing correct analogies and minimizing incorrect ones necessarily unavoidable? To definiƟvely 
answer quesƟons like these in the affirmaƟve is no trivial maƩer, and would require an impossibility 
proof. No such proof has been given. At best, what Norton presents us with is an inducƟve case (whose 
own licencing fact is not enƟrely jusƟfied) for pessimism vis-à-vis universal models of analogical 
reasoning. In the secƟons that follow, we want to give some hope to the opƟmists by moƟvaƟng an 
addiƟonal criterion of admissibility for analogical reasoning. This criterion may be combined with any 
of the aforemenƟoned models. 
 
5. Relevant Conceptual Uniformity  
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In this secƟon, we claim that relevant conceptual uniformity is a fruiƞul, potenƟally even necessary, 
addiƟonal criterion for the determinaƟon of good from bad analogical arguments. To set up this 
criterion, we first need to say something about relevance, uniformity, and the relaƟon between them. 
 
To say that a concept is unqualifiedly uniform is to say that the things/tokens it represents are 
homogeneous with respect to some of their natural properƟes. The uniformity required is not total 
homogeneity of the tokens, that is, sameness of all their properƟes, for the simple reason that that 
would result in only one token per concept. Moreover, conceptual uniformity is not to be used in 
isolaƟon from, but rather in tandem with, relevance constraints. It should be clear, from the diamond–
chalk example, that to avoid drawing unsuitable analogical inferences, such constraints must be in 
place. These, as we have seen above, may take the form of causal or correlaƟonal condiƟons relaƟng 
the properƟes (and concepts) in the base analogy to the property (and concept) in the extended 
analogy. A set of properƟes (and its corresponding set of concepts) is unqualifiedly relevant for another 
set of properƟes (and its corresponding set of concepts) if and only if the former set of properƟes 
completely and non-redundantly determines the presence (and any values) of the laƩer. As such, the 
former can be employed to genuinely explicate lawlike behaviour relaƟng to the laƩer. For example, 
certain geneƟc properƟes of Ligularia fischeri as well those of humans are presumably causally 
relevant in genuinely explicaƟng that plant’s edibility by humans. The claim we would like to put 
forward here is that if the former properƟes and concepts are unqualifiedly relevant for the laƩer 
properƟes and concepts, then those concepts must be unqualifiedly uniform. Another way of 
expressing this relaƟonship is that unqualified conceptual uniformity is a necessary, but not sufficient, 
condiƟon for unqualified conceptual relevance. 
 
Focusing only on unqualified conceptual uniformity ignores the fact that various concepts are gainfully 
employed in scienƟfic reasoning but are not enƟrely uniform – the concept species is a well-known 
example. Indeed, as we will see in the next secƟon, scienƟfic concepts may start life as fairly dis-
uniform, and gradually build towards increased uniformity. That means it is worth considering the 
extent to which a concept is uniform. Similarly, focusing only on unqualified property/conceptual 
relevance ignores what we have already implicitly conceded, namely that it is worth considering the 
degree to which a property/concept is relevant to another property/concept. This is obvious in cases 
where the base analogy properƟes/concepts may be imperfectly correlated with the extended analogy 
property/concept – think of the electrical fluid-lightning case. Taking these observaƟons into account, 
we may say that the concepts featuring in the analogy between S and T must be restricted to those 
that are relevantly uniform. That is, they must be concepts whose tokens exhibit a certain degree of 
homogeneity vis-à-vis some of their natural properƟes, with the properƟes involved in the base 
analogy at least partly determining the presence (and any values) of the property in the extended 
analogy. Other things being equal, increasing the strength of that determinaƟon relaƟon should lead 
to a corresponding increase in the degree of homogeneity between the tokens. Based on these ideas, 
we can then define the following criterion: 
 

Relevant Conceptual Uniformity Admissibility Criterion: Other things being equal, the more 
relevantly uniform those concepts, the higher the admissibility of the analogical inference. 

 
To see the usefulness of the noƟon and corresponding criterion of relevant conceptual uniformity, we 
need go no further than Norton’s bismuth-wax example. Ironically, Norton’s analysis of what really 
goes on in this example brings out the importance of this noƟon to the surface. In his own words: “All 
samples of bismuth are uniform just in the property that determines their melƟng point […] Wax 
samples lack this uniformity in the relevant property, since “wax” is the generic name for various 
mixtures of hydrocarbons” (2003: 650). In other words, it’s no wonder that the inference from some 
to all tokens of bismuth is reliable, but the one from some to all tokens of wax is not. Bismuth, qua a 
chemical element, is highly uniform with respect to several properƟes, including, most relevantly, 
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those that result in the lawlike behaviour of melƟng points.3 In more detail, melƟng points are decided 
by how much energy is needed to overcome the intermolecular forces that make up the internal 
structure of a substance. Since the internal structure of different bismuth tokens is idenƟcal, the energy 
required is the same in all cases. By contrast, wax is not a relevantly uniform concept, at least not with 
respect to the internal structure of its tokens. As such, no inference to the melƟng point of all its tokens 
can be secured from some of them. Indeed, even the subordinate concept of paraffin wax, represents 
tokens whose melƟng points vary considerably because the corresponding intermolecular forces vary 
considerably (Himran, Suwono and Mansoori 1994). 
 
The proposed relevant conceptual uniformity admissibility criterion can be integrated into any of the 
exisƟng models of analogical reasoning. We only have space for two quick demonstraƟons here, so we 
restrict most of our comments to the TSS and MPM models. For expedience, we may speak directly of 
concepts being relevantly uniform with respect to other concepts, dropping the reference to 
properƟes being relevantly uniform. Moreover, we here treat the addiƟonal criterion as necessary, 
though this need not be the case. We may thus aptly modify these accounts as follows: 
 

TSS (with relevant conceptual uniformity) 
 
(1) S is similar to T in relaƟon to properƟes Q1, …, Qn, which are encoded by concepts C1, ..., Cn. 
(2) S possesses some further property Qn+1, encoded by concept Cn+1. 
(3) Concepts C1, ..., Cn, are relevantly uniform vis-à-vis concept Cn+1. 
(4) Therefore, T possesses property Qn+1, or some property similar to Qn+1. 
 
MPM (with relevant conceptual uniformity) 

 
The admissibility of an analogical argument from S to T in relaƟon to property Qk increases if and 
only if: (a) S(Qk) and (b) for any concept Ci (corresponding to property Qi) that is disƟnct from, 
but relevantly uniform with respect to, concept Ck (corresponding to property Qk), P(T(Qk) | (S(Qi) 
≈s* T(Qi)) & B) > P(T(Qk) | B).  

 
The subscript s* in the modified MPM account signifies that S and T are similar to each other, 
without needing to specify that the similarity must not be known to be irrelevant. That’s because 
the relevant conceptual uniformity criterion now carries the burden of determining relevance. 
 
Before we bring this secƟon to a close, it is worth appraising what it is we have addressed in the 
challenge posed by Norton. First of all, we must grant that uniformiƟes cannot simply be sƟpulated. 
They must be discovered. So, Norton is right in asserƟng that facts of the maƩer enter the 
determinaƟon of analogical inference admissibility. Having said this, the relevant conceptual 
uniformity admissibility criterion is blind to the specific research quesƟon (or field) pursued. As such, 
it is not a local, but a universal, condiƟon, or at least aspires to be one provided a version of it works 
in all cases. If such a version does indeed work in all cases, then, by integraƟng it into exisƟng models 
of analogical reasoning, it brings us one step closer to universality. Less polemically, such models are 
perhaps not as local as Norton would have us believe. 
 
6. A WiƩgensteinian Spanner in the Works? 
One major obstacle to the above approach has its origins in WiƩgenstein (1953), where we are urged 
to move away from the view that terms or concepts possess essences, which can be captured by formal 
definiƟons given in terms of necessary and sufficient condiƟons. Language, on WiƩgenstein’s view, 
doesn’t work like that. Taking the concept of games as an illustraƟon, he argues that there is so much 

 
3 The periodic table of elements, of which bismuth is a member, contains some of the most uniform concepts 
found in nature, second only to the uniformity that exist across subatomic parƟcle concepts. 
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variaƟon in its tokens, e.g. ball games, board games, card games, etc., that it is pointless to try to find 
a definiƟon. But that doesn’t mean that different tokens of games are not more similar to each other 
than they are to other things. Using this claim as a basis, he then asserts that: “I can think of no beƩer 
expression to characterize these similariƟes than ‘family resemblances’… ‘games’ form a family.” (§67). 
Norton’s and WiƩgenstein’s raƟonales are similar as they both seem to claim that we philosophers are 
unhealthily preoccupied with ‘generality’, and, in so doing, omit pracƟce, which is oŌen grounded in 
local peculiariƟes – in the present case, facts about the usage of concepts and terms. 
 
WiƩgenstein’s anƟ-definiƟonal/anƟ-essenƟalist stance is in stark contrast to the requirement of 
(relevant) conceptual uniformity, for his view effecƟvely denies the uniformity of concepts. On this 
view, tokens at best exhibit varying degrees of similarity to one another, and concepts are thus less 
than perfectly uniform. This presents a challenge to the limit case of the relevant conceptual 
uniformity 
Admissibility criterion, that is, the case where the concepts involved are perfectly uniform, as it judges 
it to be unsaƟsfiable. In what follows, we consider what can be said to address this challenge. 
 
Let us start by conceding that much of what goes on in language is as WiƩgenstein describes it. Many 
of our concepts have meanings and extensions with unclear boundaries and are best treated in terms 
of graded membership. Just because many concepts are like this, however, doesn’t mean that all 
concepts, including scienƟfic ones, should be treated this way. That is to say, we must not infer that all 
concepts are dis-uniform or less than perfectly uniform from the (admiƩedly reasonable) claim that 
many everyday concepts do exhibit varying degrees of dis-uniformity. This would be as bad an 
inference by analogy, as the ones that the analogical reasoning modellers are so desperate to avoid. 
 
More posiƟvely, we can, in fact, argue for uniformity from within, that is, by following WiƩgenstein’s 
own methodology. On this methodology, membership in a concept is decided through language use. 
That some concepts in science, parƟcularly those in natural science, are uniform is evidenced by such 
use. DefiniƟons are demanded, given and consistently followed in science. Some of the best-known 
examples concern the base concepts employed in the InternaƟonal System of Units (SI): metre, second, 
mole, ampere, kelvin, candela and kilogram. Incidentally, WiƩgenstein (1953: §50) is unconvinced by 
these concepts and launches the following complaint about the standard metre. It is meaningless, 
according to him, to ask if the standard metre is a metre long, because the standard metre is a physical 
object and thus cannot be laid next to itself. This complaint is obviously outdated. At the Ɵme, the 
standard metre was defined against a physical object, namely a plaƟnum-iridium bar. Today, all seven 
base units concepts are given definiƟons in terms of fundamental physical constants and each other. 
The standard metre is defined thus: “The meter is the length of the path travelled by light in vacuum 
during a Ɵme interval of 1/299 792 458 of a second” (NIST).4  
 
Some uniformity in nature is necessary. Without it, our world would be too much of a jumble to make 
any sense of and predict. In fact, even Hume, who suggests that causal relaƟons and inducƟve 
inferences are but mere projecƟons of the mind, assumes some uniformiƟes. For, without some 
(restricted) uniformity of B following A, it would be impossible to form a habit of the mind that B 
follows A. If the world had no uniformity whatsoever, we wouldn’t even be able to communicate with 
each other, as all categories, including sounds and words, would contain a random selecƟon of tokens 
with unique features. In such a world, we would be unable to accomplish anything, unless we did so 
by chance. 
 

 
4 Indeed, the last remaining basƟon of sample-centric standards was the standard kilogram, a plaƟnum-iridium 
cylinder kept at the InternaƟonal Bureau of Weights and Measures in Sèrves, France. Even this however was 
replaced by a definiƟon in 2019. 
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Assuming that there are natural categories out there, as our best (most successful) science seems to 
indicate, the process of accurately represenƟng them with concepts cannot but be gradual. That’s 
because, as with any other epistemic invesƟgaƟon, victories are hard-earned. Concepts must be 
successively refined, which, as we have already argued, involves a tendency towards greater uniformity 
and lawlike relevance. The fact that the SI base units, as well as various other concepts, have changed 
over the years, and the way they have changed, reflects this toiling process. The standard metre, for 
example, has changed from being equal to 1/10,000,000 of the distance that separates the equator 
from the North Pole to a plaƟnum-iridium bar held at very specific temperature and pressure vacuum 
condiƟons to the contemporary vacuum traversing length of light definiƟon. Despite these changes, 
and the orders of magnitude reducƟon in the uncertainƟes involved, a metre 200 years ago is sƟll 
approximately the same as a metre today, at least in relaƟon to macroscopic scales and even down to 
opƟcal microscope scales. 
 
An important consequence of refining definiƟons towards relevant uniformity is that doing so 
increases the truth(-likeness) of proposed generalizaƟons. The generalizaƟon expressed by the 
sentence ‘All neutrinos interact with maƩer to produce electrons’ has some truth content in that 
electrons are indeed produced in neutrino interacƟons with maƩer. But it is not enƟrely true or even 
close to the truth. That’s because, as it turns out, there is not just one type of neutrinos, but three: 
electron, muon and tau neutrinos. Only the former interact with maƩer to produce electrons. Thus, if 
we replace the concept ‘neutrinos’ in the above generalizaƟon with the more uniform and relevant 
concept ‘electron neutrinos’, then we end up with a generalizaƟon that is significantly more truthlike: 
‘All electron neutrinos interact with maƩer to produce electrons.’ Note that the postulaƟon of, and 
experimental confirmaƟon that, neutrinos come in three different types was gradual, spanning about 
seven decades. 
 
7. Testability and ComputaƟonal ImplementaƟon 
One beneficial aspect of the overall approach recommended in this chapter is that it is testable. Recall 
that the goodness of analogical reasoning, according to this approach, depends partly on the degree 
of relevant conceptual uniformity. As such, and other things being equal, analogical inferences are less 
likely to succeed when the concepts involved are less relevantly uniform. This is a predicƟon that drops 
out of the proposed approach and can be tested by running experiments with human subjects. We 
could, for example, assign subjects the role of discovering extended similariƟes on the grounds of basic 
similariƟes between different domains. If we vary the relevant conceptual uniformity levels of 
concepts across the subjects, we may find that higher levels are more or less helpful in making those 
discoveries. The puzzles could involve scenarios inspired by real scienƟfic discoveries made with 
analogical reasoning, in which case it’s best to select subjects with no prior knowledge of science. 
 
Another way to test the predicƟon is through computaƟonal methods. One such method is agent-
based simulaƟons. ArƟficial agents can be placed in a simulated environment, equipped with 
informaƟon about similariƟes that hold between domains with sƟpulated properƟes, and instructed 
to draw analogical inferences about further similariƟes. Once again, varying the relevant conceptual 
uniformity levels of concepts across agents, and checking the success of the resulƟng inferences, would 
allow us to determine whether the proposed criterion is ferƟle, at least as a proof of concept. Another 
computaƟonal method that may be employed here is machine learning. We can train several 
compeƟng neuro-symbolic models with analogical reasoning data. For example, we can train them 
with correct and incorrect analogies. The data should be such that the input features of different 
models correspond to concepts with different levels of relevant conceptual uniformity. Once the 
models are trained and tested on the exisƟng data sets, we can unleash them on the world to see if 
any succeed, and indeed do beƩer than the others, at making scienƟfic discoveries. 
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It’s important to note that, as far as we can see, no great obstacle stands in the way of computaƟonally 
implemenƟng the relevant conceptual uniformity admissibility criterion. For example, either via agent-
based simulaƟons or via a machine-learning neuro-symbolic model. If that is the case, and seeing as 
other aspects of analogical reasoning have already been successfully implemented in silico, it’s safe to 
conclude that there are some grounds for hope in the asserƟon that analogical reasoning can be fully 
automated. Given the importance of analogical reasoning to heurisƟcs, this, in turn, offers hope that 
scienƟfic discovery, more generally, may one day be fully automated. Indeed, this is regardless of 
whether a universal approach to modelling analogical reasoning is feasible. 
 
8. Conclusion 
The foregoing discussion has, we hope, shed some light on analogical reasoning, its capabiliƟes and 
limits. We began by exploring five major aƩempts (TSS, HCM,BAM, MPM, SME) at modelling analogical 
reasoning. Each of these made some headway towards that goal but also had some drawbacks. We 
then proceeded to outline an objecƟon that affects all of them, namely Norton’s argument that there 
is no universal model of analogical reasoning. We followed that up with an aƩempt to eliminate or at 
least reduce the objecƟon’s sƟng by posiƟng an addiƟonal criterion for the goodness of analogical 
reasoning: the relevant conceptual uniformity admissibility criterion. We then quesƟoned the 
saƟsfiability of this criterion with a challenge that has its roots in WiƩgenstein’s family resemblance 
metaphor. As a way of meeƟng the challenge, we argued that some concepts in natural science are 
indeed uniform, or, at least, more uniform than others, and that scienƟfic inquiry strives towards such 
uniformity. We also tried to provide some iniƟal moƟvaƟon for the claim that analogical reasoning, in 
parƟcular, and scienƟfic discovery, more generally, can plausibly be automated. 
 
One final thought is worth having. Bartha (2010) asks the very perƟnent quesƟon “what reason do we 
have to expect analogical arguments to work?” and immediately responds that “[t]he best answer I 
can give is that our models of analogical reasoning provide a forum that lets us debate about, and 
ulƟmately idenƟfy, the ‘right’ criƟcal factors, and hence the appropriate invariants for establishing 
symmetry between two domains” (303). This response leaves out the most important piece of the 
puzzle. The simple reason why analogical arguments work is because nature cooperates. Less 
metaphorically, nature contains considerable uniformity as well as repeƟƟon, and that is something 
that we can exploit. AŌer all, bodies with mass aƩract each other, regardless of whether they are 
terrestrial or celesƟal. Masses and charges exhibit the same inverse square form of laws in the domains 
of gravitaƟonal and electrostaƟc phenomena. SelecƟon and resource pressures determine survival and 
reproducƟon rates, irrespecƟve of whether they were put in moƟon by the environment or by human 
hands. Newton’s aphorism is highly instrucƟve here: “Nature is aŌer all simple, and is normally self-
consistent throughout an immense variety of effects, by maintaining the same mode of operaƟon” 
(LeƩer to Dr William Briggs, reproduced in Turnbull 1960: 418). 
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